Back to Search Start Over

Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind

Authors :
Mao, Zhong-Xuan
Tian, Jing-Feng
Source :
Comptes Rendus. Mathématique, Vol 361, Iss G1, Pp 217-235 (2023)
Publication Year :
2023
Publisher :
Académie des sciences, 2023.

Abstract

In this paper, we introduce some monotonicity rules for the ratio of integrals. Furthermore, we demonstrate that the function $-T_{\nu ,\alpha ,\beta }(s)$ is completely monotonic in $s$ and absolutely monotonic in $\nu $ if and only if $\beta \ge 1$, where $T_{\nu ,\alpha ,\beta }(s)=K_{\nu }^2(s)-\beta K_{\nu -\alpha }(s)K_{\nu +\alpha }(s)$ defined on $s>0$ and $K_{\nu }(s)$ is the modified Bessel function of the second kind of order $\nu $. Finally, we determine the necessary and sufficient conditions for the functions $s \mapsto T_{\mu ,\alpha ,1}(s)/T_{\nu ,\alpha ,1}(s)$, $s \mapsto (T_{\mu ,\alpha ,1}(s) + T_{\nu ,\alpha ,1}(s))/(2T_{(\mu +\nu )/2,\alpha ,1}(s))$, and $s \mapsto \frac{\mathrm{d}^{n_1}}{\mathrm{d} \nu ^{n_1}} T_{\nu ,\alpha ,1}(s)/\frac{\mathrm{d}^{n_2}}{\mathrm{d} \nu ^{n_2}} T_{\nu ,\alpha ,1}(s)$ to be monotonic in $s\in (0,\infty )$ by employing the monotonicity rules.

Subjects

Subjects :
Mathematics
QA1-939

Details

Language :
English, French
ISSN :
17783569
Volume :
361
Issue :
G1
Database :
Directory of Open Access Journals
Journal :
Comptes Rendus. Mathématique
Publication Type :
Academic Journal
Accession number :
edsdoj.34cdd4cfece4495a7337ad74d51ffd5
Document Type :
article
Full Text :
https://doi.org/10.5802/crmath.399