Back to Search Start Over

Non-Conventional Time Domain (TD)-NMR Approaches for Food Quality: Case of Gelatin-Based Candies as a Model Food

Authors :
Sirvan Sultan Uguz
Baris Ozel
Leonid Grunin
Emin Burcin Ozvural
Mecit H. Oztop
Source :
Molecules, Vol 27, Iss 19, p 6745 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The TD-NMR technique mostly involves the use of T1 (spin-lattice) and T2 (spin-spin) relaxation times to explain the changes occurring in food systems. However, these relaxation times are affected by many factors and might not always be the best indicators to work with in food-related TD-NMR studies. In this study, the non-conventional TD-NMR approaches of Solid Echo (SE)/Magic Sandwich Echo (MSE) and Spin Diffusion in food systems were used for the first time. Soft confectionary gelatin gels were formulated and conventional (T1) and non-conventional (SE, MSE and Spin Diffusion) TD-NMR experiments were performed. Corn syrups with different glucose/fructose compositions were used to prepare the soft candies. Hardness, °Brix (°Bx), and water activity (aw) measurements were also conducted complementary to NMR experiments. Relaxation times changed (p < 0.05) with respect to syrup type with no obvious trend. SE/MSE experiments were performed to calculate the crystallinity of the samples. Samples prepared with fructose had the lowest crystallinity values (p < 0.05). Spin Diffusion experiments were performed by using Goldman–Shen pulse sequence and the interface thickness (d) was calculated. Interface thickness values showed a wide range of variation (p < 0.05). Results showed that non-conventional NMR approaches had high potential to be utilized in food systems for quality control purposes.

Details

Language :
English
ISSN :
14203049
Volume :
27
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.34cb4e9bef4248c9843e823d7abd9aa0
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules27196745