Back to Search Start Over

Second near-infrared photothermal-amplified immunotherapy using photoactivatable composite nanostimulators

Authors :
Haitao Sun
Tianzhu Yu
Xin Li
Yangyang Lei
Jianke Li
Xiuhui Wang
Peike Peng
Dalong Ni
Xiaolin Wang
Yu Luo
Source :
Journal of Nanobiotechnology, Vol 19, Iss 1, Pp 1-17 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background The construction of a nanoimmune controlled-release system that spatiotemporally recognizes tumor lesions and stimulates the immune system response step by step is one of the most potent cancer treatment strategies for improving the sensitivity of immunotherapy response. Results Here, a composite nanostimulator (CNS) was constructed for the release of second near-infrared (NIR-II) photothermal-mediated immune agents, thereby achieving spatiotemporally controllable photothermal-synergized immunotherapy. CNS nanoparticles comprise thermosensitive liposomes as an outer shell and are internally loaded with a NIR-II photothermal agent, copper sulfide (CuS), toll-like receptor-9 (TLR-9) agonist, cytosine-phospho-guanine oligodeoxynucleotides, and programmed death-ligand 1 (PD-L1) inhibitors (JQ1). Following NIR-II photoirradiation, CuS enabled the rapid elevation of localized temperature, achieving tumor ablation and induction of immunogenic cell death (ICD) as well as disruption of the lipid shell, enabling the precise release of two immune-therapeutical drugs in the tumor region. Combining ICD, TLR-9 stimulation, and inhibited expression of PD-L1 allows the subsequent enhancement of dendritic cell maturation and increases infiltration of cytotoxic T lymphocytes, facilitating regional antitumor immune responses. Conclusion CNS nanoparticle-mediated photothermal-synergized immunotherapy efficiently suppressed the growth of primary and distant tumors in two mouse models and prevented pulmonary metastasis. This study thus provides a novel sight into photo-controllably safe and efficient immunotherapy. Graphical Abstract

Details

Language :
English
ISSN :
14773155
Volume :
19
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.345e55a7aa8a4e3a84d7d57548306f46
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-021-01197-5