Back to Search Start Over

A 3D In-vitro model of the human dentine interface shows long-range osteoinduction from the dentine surface

Authors :
William Macalester
Asme Boussahel
Rafael O. Moreno-Tortolero
Mark R. Shannon
Nicola West
Darryl Hill
Adam Perriman
Source :
International Journal of Oral Science, Vol 16, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Publishing Group, 2024.

Abstract

Abstract Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects. However, the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering, exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems, which will impact on cell fate and subsequent treatment efficacy. Herein, we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells (hMSCs) encapsulated in a microporous hydrogel bioink. We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs, and that both dentine and β-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface, which is distal to the gel-substrate interface. Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models.

Subjects

Subjects :
Dentistry
RK1-715

Details

Language :
English
ISSN :
20493169
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
International Journal of Oral Science
Publication Type :
Academic Journal
Accession number :
edsdoj.340b5176fd004c438383f47102957427
Document Type :
article
Full Text :
https://doi.org/10.1038/s41368-024-00298-9