Back to Search Start Over

Three-dimensional SAR imaging with sparse linear array using tensor completion in embedded space

Authors :
Siqian Zhang
Ding Ding
Chenxi Zhao
Lingjun Zhao
Source :
EURASIP Journal on Advances in Signal Processing, Vol 2022, Iss 1, Pp 1-18 (2022)
Publication Year :
2022
Publisher :
SpringerOpen, 2022.

Abstract

Abstract Due to the huge data storage and transmission pressure, sparse data collection strategy has provided opportunities and challenges for 3D SAR imaging. However, sparse data brought by the sparse linear array will produce high-level side-lobes, as well as the aliasing and the false-alarm targets. Simultaneously, the vectorizing or matrixing of 3D data makes high computational complexity and huge memory usage, which is not practicable in real applications. To deal with these problems, tensor completion (TC), as a convex optimization problem, is used to solve the 3D sparse imaging problem efficiently. Unfortunately, the traditional TC methods are invalid to the incomplete tensor data with missing slices brought by sparse linear arrays. In this paper, a novel 3D imaging algorithm using TC in embedded space is proposed to produce 3D images with efficient side-lobes suppression. With the help of sparsity and low-rank property hidden in the 3D radar signal, the incomplete tensor data is taken as the input and converted into a higher order incomplete Hankel tensor by multiway delay embedding transform (MDT). Then, the tucker decomposition with incremental rank has been applied for completion. Subsequently, any traditional 3D imaging methods can be employed to obtain excellent imaging performance for the completed tensor. The proposed method achieves high resolution and low-level side-lobes compared with the traditional TC-based methods. It is verified by several numerical simulations and multiple comparative studies on real data. Results clearly demonstrate that the proposed method can generate 3D images with small reconstruction error even when the sparse sampling rate or signal to noise ratio is low, which confirms the validity and advantage of the proposed method.

Details

Language :
English
ISSN :
16876180
Volume :
2022
Issue :
1
Database :
Directory of Open Access Journals
Journal :
EURASIP Journal on Advances in Signal Processing
Publication Type :
Academic Journal
Accession number :
edsdoj.34058495df254cafa98e160f2ee31df1
Document Type :
article
Full Text :
https://doi.org/10.1186/s13634-022-00896-x