Back to Search Start Over

A method for predicting remaining useful life using enhanced Savitzky–Golay filter and improved deep learning framework

Authors :
Xiangyang Li
Lijun Wang
Chengguang Wang
Xiao Ma
Bin Miao
Donglai Xu
Ruixue Cheng
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-18 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Ensuring operational integrity in large-scale equipment hinges on effective fault prediction and health management. Prognostics and health management (PHM) face the challenge of accurately predicting remaining useful life (RUL) using multivariate sensor data. Traditional methods often require extensive prior knowledge for indicator construction and processing. Deep learning offers a promising alternative. This study presents a multi-channel multi-scale deep learning approach. Initially, an improved Savitzky‒Golay filter (ISG) addresses challenges posed by large and rapidly changing data volumes, enhancing data preprocessing. Subsequently, a framework integrates convolutional neural networks (CNNs) with long short-term memory (LSTM) to capture hierarchical signal information and make integrated predictions. The CNN extracts spatial features from multi-channel input data, while the LSTM captures temporal dependencies. By fusing outputs from both components, the framework enhances predictive accuracy and robustness for complex operational datasets. Experimental validation on the C-MAPSS dataset tests various fusion methods and CNN depths, determining parameters and evaluating filtering effectiveness. Comparative analyses show promising performance, particularly under dynamic conditions. While not optimal for predicting multiple fault types, it outperforms classical algorithms, especially in single fault type prediction tasks.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.33c943bfdfa44e468f2b692653430d19
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-74989-y