Back to Search Start Over

Comparing the performance of machine learning and conventional models for predicting atherosclerotic cardiovascular disease in a general Chinese population

Authors :
Zihao Fan
Zhi Du
Jinrong Fu
Ying Zhou
Pengyu Zhang
Chuning Shi
Yingxian Sun
Source :
BMC Medical Informatics and Decision Making, Vol 23, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background Accurately predicting the risk of atherosclerotic cardiovascular disease (ASCVD) is crucial for implementing individualized prevention strategies and improving patient outcomes. Our objective is to develop machine learning (ML)-based models for predicting ASCVD risk in a prospective Chinese population and compare their performance with conventional regression models. Methods A hybrid dataset consisting of 551 features was used, including 98 demographic, behavioral, and psychological features, 444 Electrocardiograph (ECG) features, and 9 Echocardiography (Echo) features. Seven machine learning (ML)-based models were trained, validated, and tested after selecting the 30 most informative features. We compared the discrimination, calibration, net benefit, and net reclassification improvement (NRI) of the ML models with those of conventional ASCVD risk calculators, such as the Pooled Cohort Equations (PCE) and Prediction for ASCVD Risk in China (China-PAR). Results The study included 9,609 participants (mean age 53.4 ± 10.4 years, 53.7% female), and during a median follow-up of 4.7 years, 431 (4.5%) participants developed ASCVD. In the testing set, the final ML-based ANN model outperformed PCE, China-PAR, recalibrated PCE, and recalibrated China-PAR in predicting ASCVD. This was demonstrated by the model's higher area under the curve (AUC) of 0.800, compared to 0.777, 0.780, 0.779, and 0.779 for the other models, respectively. Additionally, the model had a lower Hosmer–Lemeshow χ2 of 9.1, compared to 37.3, 67.6, 126.6, and 18.6 for the other models. The net benefit at a threshold of 5% was also higher for the ML-based ANN model at 0.017, compared to 0.016, 0.013, 0.017, and 0.016 for the other models, respectively. Furthermore, the NRI was 0.089 for the ML-based ANN model, while it was 0.355, 0.098, and 0.088 for PCE, China-PAR, and recalibrated PCE, respectively. Conclusions Compared to conventional regression ASCVD risk calculators, such as PCE and China-PAR, the ANN prediction model may help optimize identification of individuals at heightened cardiovascular risk by flexibly incorporating a wider range of potential predictors. The findings may help guide clinical decision-making and ultimately contribute to ASCVD prevention and management.

Details

Language :
English
ISSN :
14726947
Volume :
23
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Medical Informatics and Decision Making
Publication Type :
Academic Journal
Accession number :
edsdoj.339c0f57e4884ab197d8593d66b914a4
Document Type :
article
Full Text :
https://doi.org/10.1186/s12911-023-02242-z