Back to Search Start Over

A Large and Variable Leading Tail of Helium in a Hot Saturn Undergoing Runaway Inflation

Authors :
Michael Gully-Santiago
Caroline V. Morley
Jessica Luna
Morgan MacLeod
Antonija Oklopčić
Aishwarya Ganesh
Quang H. Tran
Zhoujian Zhang
Brendan P. Bowler
William D. Cochran
Daniel M. Krolikowski
Suvrath Mahadevan
Joe P. Ninan
Guđmundur Stefánsson
Andrew Vanderburg
Joseph A. Zalesky
Gregory R. Zeimann
Source :
The Astronomical Journal, Vol 167, Iss 4, p 142 (2024)
Publication Year :
2024
Publisher :
IOP Publishing, 2024.

Abstract

Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass–radius–insolation distribution. Here, we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder spectra show a detection of up to 10% absorption depth of the 10833 Å helium triplet. The 13.8 hr of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar—and not planetary—rest frame, consistent with the Doppler velocity structure seen in the helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/nightside asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ one-dimensional Parker wind models to estimate the mass-loss rate, finding values on the order of 2 × 10 ^13 g s ^−1 , with large uncertainties owing to the unknown X-ray and ultraviolet (XUV) flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare, as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: ohmic dissipation and XUV irradiation, slightly favoring the latter.

Details

Language :
English
ISSN :
15383881
Volume :
167
Issue :
4
Database :
Directory of Open Access Journals
Journal :
The Astronomical Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.33715524ec2e4c0f98d1512d3433a26b
Document Type :
article
Full Text :
https://doi.org/10.3847/1538-3881/ad1ee8