Back to Search Start Over

Single-domain h-BN on Pt(110): Electronic structure, correlation, and bonding

Authors :
Marco Thaler
Dominik Steiner
Alexander Menzel
Florian Mittendorfer
Erminald Bertel
Source :
Physical Review Research, Vol 2, Iss 4, p 043156 (2020)
Publication Year :
2020
Publisher :
American Physical Society, 2020.

Abstract

Extended single-domain growth of h-BN is observed on Pt(110), if the precursor molecules are deposited at sufficiently high temperatures. We examined the electronic structure of the h-BN/Pt(110) system by angle-resolved photoemission (ARPES), work-function measurements, and density-functional theory (DFT) calculations. van der Waals forces dominate the h-BN/Pt(110) interaction by far, although DFT analysis of the local density of states reveals the existence of a local covalent interaction of some N atoms with Pt surface atoms. The local bonding contributions cause the appearance of a (1×n) missing-row reconstruction (n=5 or 6) of the Pt (110) surface, if the system reverts to room temperature after h-BN adlayer formation at 1120 K. This unique phenomenon of the template adapting to the adlayer structure mitigates differences in the thermal-expansion coefficient upon cooling. The h-BN π bands hybridize with Pt d bands. Nevertheless, the dispersion of π and σ bands as measured by ARPES is overall well represented by the free-standing monolayer band structure except for the appearance of replica bands induced by the Moiré structure. A comparison between the experimentally measured π bands and the band structure obtained from DFT slab calculations suggest the existence of significant correlation effects in photoemission from h-BN/Pt(110). The locally varying distribution of N-Pt hybrid states straddling the Fermi level indicates a corresponding spatial variation of the chemical reactivity.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
26431564
Volume :
2
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Physical Review Research
Publication Type :
Academic Journal
Accession number :
edsdoj.335008b895a54df89466f05db037944c
Document Type :
article
Full Text :
https://doi.org/10.1103/PhysRevResearch.2.043156