Back to Search Start Over

Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition

Authors :
Hailing Xue
Dongyang Wang
Mingyan Jin
Hanbing Gao
Xuhui Wang
Long Xia
Dong’ang Li
Kai Sun
Huanan Wang
Xufeng Dong
Chi Zhang
Fengyu Cong
Jiaqi Lin
Source :
Microsystems & Nanoengineering, Vol 9, Iss 1, Pp 1-14 (2023)
Publication Year :
2023
Publisher :
Nature Publishing Group, 2023.

Abstract

Abstract Noninvasive brain–computer interfaces (BCIs) show great potential in applications including sleep monitoring, fatigue alerts, neurofeedback training, etc. While noninvasive BCIs do not impose any procedural risk to users (as opposed to invasive BCIs), the acquisition of high-quality electroencephalograms (EEGs) in the long term has been challenging due to the limitations of current electrodes. Herein, we developed a semidry double-layer hydrogel electrode that not only records EEG signals at a resolution comparable to that of wet electrodes but is also able to withstand up to 12 h of continuous EEG acquisition. The electrode comprises dual hydrogel layers: a conductive layer that features high conductivity, low skin-contact impedance, and high robustness; and an adhesive layer that can bond to glass or plastic substrates to reduce motion artifacts in wearing conditions. Water retention in the hydrogel is stable, and the measured skin-contact impedance of the hydrogel electrode is comparable to that of wet electrodes (conductive paste) and drastically lower than that of dry electrodes (metal pin). Cytotoxicity and skin irritation tests show that the hydrogel electrode has excellent biocompatibility. Finally, the developed hydrogel electrode was evaluated in both N170 and P300 event-related potential (ERP) tests on human volunteers. The hydrogel electrode captured the expected ERP waveforms in both the N170 and P300 tests, showing similarities in the waveforms generated by wet electrodes. In contrast, dry electrodes fail to detect the triggered potential due to low signal quality. In addition, our hydrogel electrode can acquire EEG for up to 12 h and is ready for recycled use (7-day tests). Altogether, the results suggest that our semidry double-layer hydrogel electrodes are able to detect ERPs in the long term in an easy-to-use fashion, potentially opening up numerous applications in real-life scenarios for noninvasive BCI.

Details

Language :
English
ISSN :
20557434
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microsystems & Nanoengineering
Publication Type :
Academic Journal
Accession number :
edsdoj.334421eb915740ac9ab32f2b7de552bc
Document Type :
article
Full Text :
https://doi.org/10.1038/s41378-023-00524-0