Back to Search
Start Over
Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes
- Source :
- Nature Communications, Vol 9, Iss 1, Pp 1-13 (2018)
- Publication Year :
- 2018
- Publisher :
- Nature Portfolio, 2018.
-
Abstract
- Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imaging GWAS.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 9
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3315ced0f5074d3a9344c50e4a584c44
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-018-05444-6