Back to Search Start Over

Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes

Authors :
Habib Ganjgahi
Anderson M. Winkler
David C. Glahn
John Blangero
Brian Donohue
Peter Kochunov
Thomas E. Nichols
Source :
Nature Communications, Vol 9, Iss 1, Pp 1-13 (2018)
Publication Year :
2018
Publisher :
Nature Portfolio, 2018.

Abstract

Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imaging GWAS.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.3315ced0f5074d3a9344c50e4a584c44
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-018-05444-6