Back to Search Start Over

Global existence and uniform boundedness to a bi-attraction chemotaxis system with nonlinear indirect signal mechanisms

Authors :
Chang-Jian Wang
Jia-Yue Zhu
Source :
Communications in Analysis and Mechanics, Vol 15, Iss 4, Pp 743-762 (2023)
Publication Year :
2023
Publisher :
AIMS Press, 2023.

Abstract

In this paper, we study the following quasilinear chemotaxis system $ \begin{equation*} \left\{ \begin{array}{ll} u_{t} = \Delta u-\chi \nabla \cdot (\varphi (u)\nabla v)-\xi \nabla \cdot (\psi(u)\nabla w)+f(u), \ &\ \ x\in \Omega, \ t>0, \ \\ 0 = \Delta v-v+v_{1}^{\gamma_{1}}, \ 0 = \Delta v_{1}-v_{1}+u^{\gamma_{2}}, \ &\ \ x\in \Omega, \ t>0, \ \\ 0 = \Delta w-w+w_{1}^{\gamma_{3}}, \ 0 = \Delta w_{1}-w_{1}+u^{\gamma_{4}}, \ &\ \ x\in \Omega, \ t>0, \end{array} \right. \end{equation*} $ in a smoothly bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq 1) $ with homogeneous Neumann boundary conditions, where $ \varphi(\varrho)\leq\varrho(\varrho+1)^{\theta-1}, $ $ \psi(\varrho)\leq\varrho(\varrho+1)^{l-1} $ and $ f(\varrho)\leq a \varrho-b\varrho^{s} $ for all $ \varrho\geq0, $ and the parameters satisfy $ a, b, \chi, \xi, \gamma_{2}, \gamma_{4} > 0, $ $ s > 1, $ $ \gamma_{1}, \gamma_{3}\geq1 $ and $ \theta, l\in \mathbb{R}. $ It has been proven that if $ s \geq\max\{ \gamma_{1}\gamma_{2}+\theta, \gamma_{3}\gamma_{4}+l\}, $ then the system has a nonnegative classical solution that is globally bounded. The boundedness condition obtained in this paper relies only on the power exponents of the system, which is independent of the coefficients of the system and space dimension $ n. $ In this work, we generalize the results established by previous researchers.

Details

Language :
English
ISSN :
28363310
Volume :
15
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Communications in Analysis and Mechanics
Publication Type :
Academic Journal
Accession number :
edsdoj.32ee478f1ced4a06aa159982ec16b3d0
Document Type :
article
Full Text :
https://doi.org/10.3934/cam.2023036?viewType=HTML