Back to Search Start Over

Effect of Mixing Intensity on Electrochemical Performance of Oxide/Sulfide Composite Electrolytes

Authors :
Jessica Gerstenberg
Dominik Steckermeier
Arno Kwade
Peter Michalowski
Source :
Batteries, Vol 10, Iss 3, p 95 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Despite the variety of solid electrolytes available, no single solid electrolyte has been found that meets all the requirements of the successor technology of lithium-ion batteries in an optimum way. However, composite hybrid electrolytes that combine the desired properties such as high ionic conductivity or stability against lithium are promising. The addition of conductive oxide fillers to sulfide solid electrolytes has been reported to increase ionic conductivity and improve stability relative to the individual electrolytes, but the influence of the mixing process to create composite electrolytes has not been investigated. Here, we investigate Li3PS4 (LPS) and Li7La3Zr2O12 (LLZO) composite electrolytes using electrochemical impedance spectroscopy and distribution of relaxation times. The distinction between sulfide bulk and grain boundary polarization processes is possible with the methods used at temperatures below 10 °C. We propose lithium transport through the space-charge layer within the sulfide electrolyte, which increases the conductivity. With increasing mixing intensities in a high-energy ball mill, we show an overlay of the enhanced lithium-ion transport with the structural change of the sulfide matrix component, which increases the ionic conductivity of LPS from 4.1 × 10−5 S cm−1 to 1.7 × 10−4 S cm−1.

Details

Language :
English
ISSN :
23130105
Volume :
10
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Batteries
Publication Type :
Academic Journal
Accession number :
edsdoj.32dff17f5823446c8612e0f4b83a5a77
Document Type :
article
Full Text :
https://doi.org/10.3390/batteries10030095