Back to Search
Start Over
Janus Poly(Vinylidene Fluoride) Membranes with Penetrative Pores for Photothermal Desalination
- Source :
- Research, Vol 2020 (2020)
- Publication Year :
- 2020
- Publisher :
- American Association for the Advancement of Science (AAAS), 2020.
-
Abstract
- Solar-driven desalination has been considered as a promising technology for producing clean water through an abundant and pollution-free energy source. It is a critical challenge to reasonably design the porous morphology and the thermal management of photothermal membranes for enabling efficient energy conversion and water production. In this work, a Janus poly(vinylidene fluoride) membrane was fabricated in combination of penetrative pore structure, asymmetric surface wettability with proper thermal management for high-efficiency solar desalination. Highly open and directly penetrative pores achieved by the two-dimensional solvent freezing strategy are considered to provide direct pathways for water and vapor transportation. The unique feature of hydrophobic upper layer/hydrophilic lower layer enables the photothermal membranes to self-float on the water surface and rapidly pump water from the bulk to the surface. The resulting Janus membrane exhibits a satisfactory light absorbance as high as 97% and a photothermal conversion efficiency of 62.8% under one-sun irradiation in a direct contact mode. The solar-to-vapor efficiency rises up to 90.2% with the assistance of a thermal insulator adopted beneath. Both the Janus membrane and the composite setup are able to work efficiently with a high stability in seawater desalination, and the concentration of ion in condensed water is reduced to below 1 ppm. Therefore, Janus membranes with directly penetrative pores and photothermal surfaces shine a light on the development of high-performance solar evaporators for the practical application in solar seawater desalination.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 26395274
- Volume :
- 2020
- Database :
- Directory of Open Access Journals
- Journal :
- Research
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.32cf646010034680b825293fc26d9a05
- Document Type :
- article
- Full Text :
- https://doi.org/10.34133/2020/3241758