Back to Search
Start Over
On the planarity of the k-zero-divisor hypergraphs
- Source :
- AKCE International Journal of Graphs and Combinatorics, Vol 12, Iss 2, Pp 169-176 (2015)
- Publication Year :
- 2015
- Publisher :
- Taylor & Francis Group, 2015.
-
Abstract
- Let R be a commutative ring with identity and let Z(R,k) be the set of all k-zero-divisors in R and k>2 an integer. The k-zero-divisor hypergraph of R, denoted by Hk(R), is a hypergraph with vertex set Z(R,k), and for distinct element x1,x2,…,xk in Z(R,k), the set {x1,x2,…,xk} is an edge of Hk(R) if and only if x1x2⋯xk=0 and the product of elements of no (k−1)-subset of {x1,x2,…,xk} is zero. In this paper, we characterize all finite commutative non-local rings R for which the k-zero-divisor hypergraph is planar.
- Subjects :
- Hypergraph
Zero-divisor graph
Planar hypergraph
Incidence graph
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 09728600
- Volume :
- 12
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- AKCE International Journal of Graphs and Combinatorics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.328e73e1ee0042dfabf671454a86731f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.akcej.2015.11.011