Back to Search Start Over

On the planarity of the k-zero-divisor hypergraphs

Authors :
T. Tamizh Chelvam
K. Selvakumar
V. Ramanathan
Source :
AKCE International Journal of Graphs and Combinatorics, Vol 12, Iss 2, Pp 169-176 (2015)
Publication Year :
2015
Publisher :
Taylor & Francis Group, 2015.

Abstract

Let R be a commutative ring with identity and let Z(R,k) be the set of all k-zero-divisors in R and k>2 an integer. The k-zero-divisor hypergraph of R, denoted by Hk(R), is a hypergraph with vertex set Z(R,k), and for distinct element x1,x2,…,xk in Z(R,k), the set {x1,x2,…,xk} is an edge of Hk(R) if and only if x1x2⋯xk=0 and the product of elements of no (k−1)-subset of {x1,x2,…,xk} is zero. In this paper, we characterize all finite commutative non-local rings R for which the k-zero-divisor hypergraph is planar.

Details

Language :
English
ISSN :
09728600
Volume :
12
Issue :
2
Database :
Directory of Open Access Journals
Journal :
AKCE International Journal of Graphs and Combinatorics
Publication Type :
Academic Journal
Accession number :
edsdoj.328e73e1ee0042dfabf671454a86731f
Document Type :
article
Full Text :
https://doi.org/10.1016/j.akcej.2015.11.011