Back to Search Start Over

Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system

Authors :
Gabriela Scheibel Cassol
Chii Shang
Alicia Kyoungjin An
Noman Khalid Khanzada
Francesco Ciucci
Alessandro Manzotti
Paul Westerhoff
Yinghao Song
Li Ling
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Recent advancements in membrane-assisted seawater electrolysis powered by renewable energy offer a sustainable path to green hydrogen production. However, its large-scale implementation faces challenges due to slow power-to-hydrogen (P2H) conversion rates. Here we report a modular forward osmosis-water splitting (FOWS) system that integrates a thin-film composite FO membrane for water extraction with alkaline water electrolysis (AWE), denoted as FOWSAWE. This system generates high-purity hydrogen directly from wastewater at a rate of 448 Nm3 day−1 m− 2 of membrane area, over 14 times faster than the state-of-the-art practice, with specific energy consumption as low as 3.96 kWh Nm−3. The rapid hydrogen production rate results from the utilisation of 1 M potassium hydroxide as a draw solution to extract water from wastewater, and as the electrolyte of AWE to split water and produce hydrogen. The current system enables this through the use of a potassium hydroxide-tolerant and hydrophilic FO membrane. The established water-hydrogen balance model can be applied to design modular FO and AWE units to meet demands at various scales, from households to cities, and from different water sources. The FOWSAWE system is a sustainable and an economical approach for producing hydrogen at a record-high rate directly from wastewater, marking a significant leap in P2H practice.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.3252d0c4caf14bb2b0f7e486cc7c863a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-46964-8