Back to Search Start Over

Forced Biomineralization: A Review

Authors :
Hermann Ehrlich
Elizabeth Bailey
Marcin Wysokowski
Teofil Jesionowski
Source :
Biomimetics, Vol 6, Iss 3, p 46 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers today, which have evolved to inhabit a variety of industrial aqueous environments with elevated metal concentrations. As an example of extreme biomineralization, we introduce the category of “forced biomineralization”, which we use to refer to the biologically mediated sequestration of dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environments with very high or toxic metal ion concentrations. While much additional work lies ahead to characterize the various pathways by which these biominerals form, forced biomineralization has been shown to provide insights for the progression of extreme biomimetics, allowing for promising new forays into creating the next generation of composites using organic-templating approaches under biologically extreme laboratory conditions relevant to a wide range of industrial conditions.

Details

Language :
English
ISSN :
23137673
Volume :
6
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Biomimetics
Publication Type :
Academic Journal
Accession number :
edsdoj.3208031b06cb42b5ae7a262e8e6b962d
Document Type :
article
Full Text :
https://doi.org/10.3390/biomimetics6030046