Back to Search Start Over

Delineation of 12-Lead ECG Representative Beats Using Convolutional Encoder–Decoders with Residual and Recurrent Connections

Authors :
Vessela Krasteva
Todor Stoyanov
Ramun Schmid
Irena Jekova
Source :
Sensors, Vol 24, Iss 14, p 4645 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The aim of this study is to address the challenge of 12-lead ECG delineation by different encoder–decoder architectures of deep neural networks (DNNs). This study compares four concepts for encoder–decoders based on a fully convolutional architecture (CED-Net) and its modifications with a recurrent layer (CED-LSTM-Net), residual connections between symmetrical encoder and decoder feature maps (CED-U-Net), and sequential residual blocks (CED-Res-Net). All DNNs transform 12-lead representative beats to three diagnostic ECG intervals (P-wave, QRS-complex, QT-interval) used for the global delineation of the representative beat (P-onset, P-offset, QRS-onset, QRS-offset, T-offset). All DNNs were trained and optimized using the large PhysioNet ECG database (PTB-XL) under identical conditions, applying an advanced approach for machine-based supervised learning with a reference algorithm for ECG delineation (ETM, Schiller AG, Baar, Switzerland). The test results indicate that all DNN architectures are equally capable of reproducing the reference delineation algorithm’s measurements in the diagnostic PTB database with an average P-wave detection accuracy (96.6%) and time and duration errors: mean values (−2.6 to 2.4 ms) and standard deviations (2.9 to 11.4 ms). The validation according to the standard-based evaluation practices of diagnostic electrocardiographs with the CSE database outlines a CED-Net model, which measures P-duration (2.6 ± 11.0 ms), PQ-interval (0.9 ± 5.8 ms), QRS-duration (−2.4 ± 5.4 ms), and QT-interval (−0.7 ± 10.3 ms), which meet all standard tolerances. Noise tests with high-frequency, low-frequency, and power-line frequency noise (50/60 Hz) confirm that CED-Net, CED-Res-Net, and CED-LSTM-Net are robust to all types of noise, mostly presenting a mean duration error < 2.5 ms when compared to measurements without noise. Reduced noise immunity is observed for the U-net architecture. Comparative analysis with other published studies scores this research within the lower range of time errors, highlighting its competitive performance.

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
14
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.31bf939d03ae443d986aa10379c7d0a5
Document Type :
article
Full Text :
https://doi.org/10.3390/s24144645