Back to Search Start Over

Well-Dispersed Graphene Enhanced Lithium Complex Grease Toward High-Efficient Lubrication

Authors :
Kaiyue Lin
Zhuang Zhao
Yuting Li
Zihan Zeng
Xiaofeng Wei
Xiaoqiang Fan
Minhao Zhu
Source :
Chinese Journal of Mechanical Engineering, Vol 36, Iss 1, Pp 1-12 (2023)
Publication Year :
2023
Publisher :
SpringerOpen, 2023.

Abstract

Abstract Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the influence of graphene dispersion on the thickening effect and lubrication function is considered. A well-dispersed lubricant additive was obtained via trihexyl tetradecyl phosphonium bis(2-ethylhexyl) phosphate modified graphene ([P66614][DEHP]-G). Then lithium complex grease was prepared by saponification with 12-OH stearic acid, sebacic acid, and lithium hydroxide, using polyalphaolefin (PAO20) as base oil and the modified-graphene as lubricating additive, with the original graphene as a comparison. The physicochemical properties and lubrication performance of the as-prepared greases were evaluated in detail. The results show that the as-prepared greases have high dropping point and colloidal stability. Furthermore, modified-graphene lithium complex grease offered the best friction reduction and anti-wear abilities, manifesting the reduction of friction coefficient and wear volume up to 18.84% and 67.34%, respectively. With base oil overflow and afflux, well-dispersed [P66614][DEHP]-G was readily adsorbed to the worn surfaces, resulting in the formation of a continuous and dense graphene deposition film. The synergy of deposited graphene-film, spilled oil, and adhesive grease greatly improves the lubrication function of grease. This research paves the way for modulating high-performance lithium complex grease to reduce the friction and wear of movable machinery.

Details

Language :
English
ISSN :
21928258
Volume :
36
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Chinese Journal of Mechanical Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.31a26303512744f18f2efd5b575aaa3c
Document Type :
article
Full Text :
https://doi.org/10.1186/s10033-023-00959-6