Back to Search
Start Over
Transcriptome Analysis and Functional Characterization Reveal That Peclg Gene Contributes to the Virulence of Penicillium expansum on Apple Fruits
- Source :
- Foods, Vol 12, Iss 3, p 479 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Penicillium expansum is the causal agent of blue mold decay on apple fruits and is also known to be the major producer of patulin, a mycotoxin that represents serious hazard to human health. Several mechanisms have been suggested to explain the pathogenesis of P. expansum in host plants. Secreted effector proteins are vital for the pathogenicity of many fungal pathogens through manipulating their hosts for efficient colonization. In this study, we performed a RNA-Seq analysis followed by computational prediction of effector proteins from P. expansum during infection of the host apple fruits, and a total of 212 and 268 candidate effector protein genes were identified at 6 and 9 h after inoculation (hai), respectively. One of the candidate effector protein genes was identified as a concanavalin A-like lectin/glucanase (Peclg), which was dramatically induced during the pathogen–host interaction. Targeted knockout of Peclg resulted in significant reduction in conidial production and germination relative to the wild type. Further studies showed that in addition to salt stress, the mutant was much more sensitive to SDS and Congo red, suggesting a defect in cell wall integrity. Pathogenicity assays revealed that the ΔPeclg mutant showed significant decrease in virulence and infectious growth on apple fruits. All these results suggest that Peclg is required for fungal growth, stress response, and the virulence of P. expansum.
- Subjects :
- apple
effector
pathogenicity
Penicillium expansum
Chemical technology
TP1-1185
Subjects
Details
- Language :
- English
- ISSN :
- 23048158
- Volume :
- 12
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- Foods
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.318af7d9ad4bdca91417cd0e1a766b
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/foods12030479