Back to Search Start Over

Computationally grafting an IgE epitope onto a scaffold: Implications for a pan anti-allergy vaccine design

Authors :
Sari S. Sabban
Source :
Computational and Structural Biotechnology Journal, Vol 19, Iss , Pp 4738-4750 (2021)
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Allergy is becoming an intensifying disease among the world population, particularly in the developed world. Once allergy develops, sufferers are permanently trapped in a hyper-immune response that makes them sensitive to innocuous substances. The immune pathway concerned with developing allergy is the Th2 immune pathway where the IgE antibody binds to its Fc∊RI receptor on Mast and Basophil cells. This paper discusses a protocol that could disrupt the binding between the antibody and its receptor for a potential permanent treatment. Ten proteins were computationally designed to display a human IgE motif very close in proximity to the IgE antibody’s Fc∊RI receptor’s binding site in an effort for these proteins to be used as a vaccine against our own IgE antibody. The motif of interest was the FG loop motif and it was excised and grafted onto a Staphylococcus aureus protein (PDB ID 1YN3), then the motif + scaffold structure had its sequence re-designed around the motif to find an amino acid sequence that would fold to the designed structure correctly. These ten computationally designed proteins showed successful folding when simulated using Rosetta’s AbinitioRelax folding simulation and the IgE epitope was clearly displayed in its native three-dimensional structure in all of them. These designed proteins have the potential to be used as a pan anti-allergy vaccine. This work employedin silicobased methods for designing the proteins and did not include any experimental verifications.

Details

Language :
English
ISSN :
20010370
Volume :
19
Issue :
4738-4750
Database :
Directory of Open Access Journals
Journal :
Computational and Structural Biotechnology Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.314c634b405245f8a267acdd2ff7158c
Document Type :
article
Full Text :
https://doi.org/10.1016/j.csbj.2021.08.012