Back to Search Start Over

The Number of P-Vertices of Singular Acyclic Matrices: An Inverse Problem

Authors :
Du Zhibin
da Fonseca Carlos M.
Source :
Discussiones Mathematicae Graph Theory, Vol 40, Iss 2, Pp 525-532 (2020)
Publication Year :
2020
Publisher :
University of Zielona Góra, 2020.

Abstract

Let A be a real symmetric matrix. If after we delete a row and a column of the same index, the nullity increases by one, we call that index a P-vertex of A. When A is an n × n singular acyclic matrix, it is known that the maximum number of P-vertices is n − 2. If T is the underlying tree of A, we will show that for any integer number k ∈ {0, 1, . . . , n − 2}, there is a (singular) matrix whose graph is T and with k P-vertices. We will provide illustrative examples.

Details

Language :
English
ISSN :
20835892
Volume :
40
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Discussiones Mathematicae Graph Theory
Publication Type :
Academic Journal
Accession number :
edsdoj.313ad6779cc04528bd60729f0c41a1a3
Document Type :
article
Full Text :
https://doi.org/10.7151/dmgt.2282