Back to Search Start Over

Impact of economic indicators on rice production: A machine learning approach in Sri Lanka.

Authors :
Sherin Kularathne
Namal Rathnayake
Madhawa Herath
Upaka Rathnayake
Yukinobu Hoshino
Source :
PLoS ONE, Vol 19, Iss 6, p e0303883 (2024)
Publication Year :
2024
Publisher :
Public Library of Science (PLoS), 2024.

Abstract

Rice is a crucial crop in Sri Lanka, influencing both its agricultural and economic landscapes. This study delves into the complex interplay between economic indicators and rice production, aiming to uncover correlations and build prediction models using machine learning techniques. The dataset, spanning from 1960 to 2020, includes key economic variables such as GDP, inflation rate, manufacturing output, population, population growth rate, imports, arable land area, military expenditure, and rice production. The study's findings reveal the significant influence of economic factors on rice production in Sri Lanka. Machine learning models, including Linear Regression, Support Vector Machines, Ensemble methods, and Gaussian Process Regression, demonstrate strong predictive accuracy in forecasting rice production based on economic indicators. These results underscore the importance of economic indicators in shaping rice production outcomes and highlight the potential of machine learning in predicting agricultural trends. The study suggests avenues for future research, such as exploring regional variations and refining models based on ongoing data collection.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
19
Issue :
6
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.312b6f4f52b54c249a440878b8ddca88
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0303883