Back to Search Start Over

A Wireless System for Monitoring Leakage Current in Electrical Substation Equipment

Authors :
N. Harid
A. C. Bogias
H. Griffiths
S. Robson
A. Haddad
Source :
IEEE Access, Vol 4, Pp 2965-2975 (2016)
Publication Year :
2016
Publisher :
IEEE, 2016.

Abstract

In this paper, the design and the development of a remote system for continuous monitoring of leakage currents and ground currents in high voltage electrical substations are proposed. Based on wireless local area network technology, the system can be used to monitor continuously a variety of plants within the substation and has low power consumption with inbuilt overvoltage protection. It consists of a transmitter module equipped with a data acquisition (DAQ) system connected to leakage current and voltage sensors, and a receiver module connected to a remote controller for data processing and storage. The principle of operation and the characteristics of the various components of the system are described. Validation tests have been used to verify its performance in three different test situations: A) laboratory monitoring of the leakage current and voltage of a distribution surge arrester; B) laboratory measurement of the leakage current of an outdoor insulator; and C) field monitoring of the earth current and potential rise of high-voltage tower. The measured results are in close agreement with those recorded directly through a DAQ card with fiber-optic and coaxial cable connected systems. Data processing is carried out at the receiving end so that the monitored parameter is displayed continuously or at specified time intervals. The operation of the system has been tested and proved resilient under high-frequency interference signals such as those generated by corona and surface discharges.

Details

Language :
English
ISSN :
21693536
Volume :
4
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.30e1d29419734617a866df6effa6c637
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2016.2577553