Back to Search Start Over

Learning semi-supervised enrichment of longitudinal imaging-genetic data for improved prediction of cognitive decline

Authors :
Hoon Seo
Lodewijk Brand
Hua Wang
for the Alzheimer’s Disease Neuroimaging Initiative
Source :
BMC Medical Informatics and Decision Making, Vol 24, Iss S1, Pp 1-14 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Alzheimer’s Disease (AD) is a progressive memory disorder that causes irreversible cognitive decline. Given that there is currently no cure, it is critical to detect AD in its early stage during the disease progression. Recently, many statistical learning methods have been presented to identify cognitive decline with temporal data, but few of these methods integrate heterogeneous phenotype and genetic information together to improve the accuracy of prediction. In addition, many of these models are often unable to handle incomplete temporal data; this often manifests itself in the removal of records to ensure consistency in the number of records across participants. Results To address these issues, in this work we propose a novel approach to integrate the genetic data and the longitudinal phenotype data to learn a fixed-length “enriched” biomarker representation derived from the temporal heterogeneous neuroimaging records. Armed with this enriched representation, as a fixed-length vector per participant, conventional machine learning models can be used to predict clinical outcomes associated with AD. Conclusion The proposed method shows improved prediction performance when applied to data derived from Alzheimer’s Disease Neruoimaging Initiative cohort. In addition, our approach can be easily interpreted to allow for the identification and validation of biomarkers associated with cognitive decline.

Details

Language :
English
ISSN :
14726947
Volume :
24
Issue :
S1
Database :
Directory of Open Access Journals
Journal :
BMC Medical Informatics and Decision Making
Publication Type :
Academic Journal
Accession number :
edsdoj.30cd7da0cfa4c6b81aeda9f2bc608b5
Document Type :
article
Full Text :
https://doi.org/10.1186/s12911-024-02455-w