Back to Search Start Over

RES-Xre toxin-antitoxin locus knaAT maintains the stability of the virulence plasmid in Klebsiella pneumoniae

Authors :
Yongkui Chen
Ying-Xian Goh
Peifei Li
Jiahao Guan
Yanjie Chao
Hongping Qu
Hong-Yu Ou
Xiaoli Wang
Source :
Emerging Microbes and Infections, Vol 13, Iss 1 (2024)
Publication Year :
2024
Publisher :
Taylor & Francis Group, 2024.

Abstract

Hypervirulent Klebsiella pneumoniae isolates have been increasingly reported worldwide, especially hypervirulent drug-resistant variants owing to the acquisition of a mobilizable virulence plasmid by a carbapenem-resistant strain. This pLVPK-like mobilizable plasmid encodes various virulence factors; however, information about its genetic stability is lacking. This study aimed to investigate the type II toxin-antitoxin (TA) modules that facilitate the virulence plasmid to remain stable in K. pneumoniae. More than 3,000 TA loci in 2,000 K. pneumoniae plasmids were examined for their relationship with plasmid cargo genes. TA loci from the RES-Xre family were highly correlated with virulence plasmids of hypervirulent K. pneumoniae. Overexpression of the RES toxin KnaT, encoded by the virulence plasmid-carrying RES-Xre locus knaAT, halts the cell growth of K. pneumoniae and E. coli, whereas co-expression of the cognate Xre antitoxin KnaA neutralizes the toxicity of KnaT. knaA and knaT were co-transcribed, representing the characteristics of a type II TA module. The knaAT deletion mutation gradually lost its virulence plasmid in K. pneumoniae, whereas the stability of the plasmid in E. coli was enhanced by adding knaAT, which revealed that the knaAT operon maintained the genetic stability of the large virulence plasmid in K. pneumoniae. String tests and mouse lethality assays subsequently confirmed that a loss of the virulence plasmid resulted in reduced pathogenicity of K. pneumoniae. These findings provide important insights into the role of the RES-Xre TA pair in stabilizing virulence plasmids and disseminating virulence genes in K. pneumoniae.

Details

Language :
English
ISSN :
22221751
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Emerging Microbes and Infections
Publication Type :
Academic Journal
Accession number :
edsdoj.30c89dbc01304fab8b71c0b1952b6cc4
Document Type :
article
Full Text :
https://doi.org/10.1080/22221751.2024.2316814