Back to Search Start Over

Nuclear shielding performances of borate/sodium/potassium glasses doped with Sm3+ ions

Authors :
Hesham M.H. Zakaly
Y.S. Rammah
H.O. Tekin
Antoaneta Ene
Ali Badawi
Shams A.M. Issa
Source :
Journal of Materials Research and Technology, Vol 18, Iss , Pp 1424-1435 (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

In this paper the impact of adding the trivalent samarium (Sm3+) rare earth (RE3+) ions on the nuclear shielding performances of borate/sodium/potassium glasses with chemical form B2O3(70–x)/Na2O15/K2O15/Sm2O3; x = 0.0–2.0 mol% was examined. Material densities were enhanced quantitatively from 2.22 to 2.48 g/cm3. Several radiation shielding parameters have been determined in the 0.15–15 MeV photon energy range via MCNPX simulation code and Phy-X/PSD software. Results showed that the addition of Sm3+ ions to the glasses improved the linear (LAC) and mass (MAC) attenuation coefficients. The Sm2.0 sample (rich with Sm3+ ions and with a high density) has the highest LAC and MAC at all photon energy values under investigation. The half-value layer (T1/2) values of the studied Sm-glasses followed the trend: (T1/2)Sm0.0> (T1/2)Sm0.1> (T1/2)Sm0.3> (T1/2)Sm0.5> (T1/2)Sm0.7> (T1/2)Sm1.0> (T1/2)Sm1.5> (T1/2)Sm2.0. The mean free path (λ) has a similar trend as T1/2. The numerical results of effective atomic number (Zeff) were: Sm0.0 = 10.538, Sm0.1 = 10.70646, Sm0.3 = 11.03259, Sm0.5 = 11.28569, Sm0.7 = 11.53882, Sm1.0 = 11.91848, Sm1.5 = 12.42718, Sm2.0 = 12.9175 at 0.015 MeV, and Sm0.0 = 8.36553, Sm0.1 = 8.42831, Sm0.3 = 8.55388, Sm0.5 = 8.67944, Sm0.7 = 8.80502, Sm1.0 = 8.99335, Sm1.5 = 9.28877, Sm2.0 = 9.58377 at 15 MeV. The Sm2.0 glass sample has the greatest Zeff value across all gamma-ray energies. This condition is likewise associated with the highest Sm (Z = 62) content in Sm2.0 when compared to the other studied glasses. In addition, the Sm2.0 sample had the lowest exposure (EBF) and energy absorption (EABF) build-up factors values among the glass samples under investigation. All the obtained observations confirm that the Sm-glass samples can be considered promising materials for attenuation of nuclear radiations.

Details

Language :
English
ISSN :
22387854
Volume :
18
Issue :
1424-1435
Database :
Directory of Open Access Journals
Journal :
Journal of Materials Research and Technology
Publication Type :
Academic Journal
Accession number :
edsdoj.300b7b6d258241b0ad409b9b1ad1cea0
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jmrt.2022.03.030