Back to Search Start Over

D2 Receptors and Sodium Ion Channel Blockades of the Basolateral Amygdala Attenuate Lithium Chloride-Induced Conditioned Taste Aversion Applying to Cancer Chemotherapy Nausea and Vomiting

Authors :
Zhi-Yue Gao
Chung Ming Huang
Cai-N Cheng
Andrew Chih-Wei Huang
Source :
Brain Sciences, Vol 13, Iss 4, p 697 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Cancer patients regularly suffer from the behavioral symptoms of chemotherapy-induced nausea and vomiting. Particularly, it is involved in Pavlovian conditioning. Lithium chloride (LiCl) was used as the unconditioned stimulus (US) and contingent with the tastant, for example, a saccharin solution (i.e., the conditioned stimulus; CS), resulted in conditioned taste aversion (CTA) to the CS intake. The present study employed an animal model of LiCl-induced CTA to imitate chemotherapy-induced nausea and vomiting symptoms. Recently, the basolateral amygdala (BLA) was shown to mediate LiCl-induced CTA learning; however, which brain mechanisms of the BLA regulate CTA by LiCl remain unknown. The present study was designed to test this issue, and 4% lidocaine or D2 blocker haloperidol were microinjected into BLA between the 0.1% saccharin solution intake and 0.15M LiCl. The results showed lidocaine microinjections into the BLA could attenuate the LiCl-induced CTA. Microinjections of haloperidol blunted the CTA learning by LiCl. Altogether, BLA via the sodium chloride ion channel and D2 receptors control LiCl-induced conditioned saccharin solution intake suppression. The findings can provide some implications and contributions to cancer chemotherapy-induced nausea and vomiting side effects, and will help to develop novel strategies to prevent the side effects of cancer chemotherapy.

Details

Language :
English
ISSN :
20763425
Volume :
13
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Brain Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.2fc9b5c3f3740f18e0df9c23544a2ec
Document Type :
article
Full Text :
https://doi.org/10.3390/brainsci13040697