Back to Search Start Over

Method for Determining the Plasmon Resonance Wavelength in Fiber Sensors Based on Tilted Fiber Bragg Gratings

Authors :
Egor Manuylovich
Kirill Tomyshev
Oleg V. Butov
Source :
Sensors, Vol 19, Iss 19, p 4245 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

Surface plasmon resonance-based fiber-optic sensors are of increasing interest in modern sensory research, especially for chemical and biomedical applications. Special attention deserves to be given to sensors based on tilted fiber Bragg gratings, due to their unique spectral properties and potentially high sensitivity and resolution. However, the principal task is to determine the plasmon resonance wavelength based on the spectral characteristics of the sensor and, most importantly, to measure changes in environmental parameters with high resolution, while the existing indirect methods are only useable in a narrow spectral range. In this paper, we present a new approach to solving this problem, based on the original method of determining the plasmon resonance spectral position in the automatic mode by precisely calculating the constriction location on the transmission spectrum of the sensor. We also present an experimental comparison of various data processing methods in both a narrow and a wide range of the refractive indexes. Application of our method resulted in achieving a resolution of up to 3 × 10−6 in terms of the refractive index.

Details

Language :
English
ISSN :
14248220
Volume :
19
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.2f796eaffdb423a9b0a4025976cf12e
Document Type :
article
Full Text :
https://doi.org/10.3390/s19194245