Back to Search Start Over

Genome-Wide Association Study Identifies a Rice Panicle Blast Resistance Gene Pb3 Encoding NLR Protein

Authors :
Lu Ma
Yao Yu
Changqing Li
Panting Wang
Kunquan Liu
Wenjing Ma
Wei Wang
Yunxin Fan
Ziwei Xiong
Tingting Jiang
Jingran Zhang
Zhixue Wang
Jianfei Wang
Hongsheng Zhang
Yongmei Bao
Source :
International Journal of Molecular Sciences, Vol 23, Iss 22, p 14032 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Rice blast is a worldwide fungal disease that seriously affects the yield and quality of rice. Identification of resistance genes against rice blast disease is one of the effective ways to control this disease. However, panicle blast resistance genes, which are useful in the fields, have rarely been studied due to the difficulty in phenotypic identification and the environmental influences. Here, panicle blast resistance-3 (Pb3) was identified by a genome-wide association study (GWAS) based on the panicle blast resistance phenotypes of 230 Rice Diversity Panel I (RDP-I) accessions with 700,000 single-nucleotide polymorphism (SNP) markers. A total of 16 panicle blast resistance loci (PBRLs) within three years including one repeated locus PBRL3 located in chromosome 11 were identified. In addition, 7 genes in PBRL3 were identified as candidate genes by haplotype analysis, which showed significant differences between resistant and susceptible varieties. Among them, one nucleotide-binding domain and Leucine-rich Repeat (NLR) gene Pb3 was highly conserved in multiple resistant rice cultivars, and its expression was significantly induced after rice blast inoculation. Evolutionary analysis showed that Pb3 was a typical disease resistance gene containing coiled-coil, NB-ARC, and LRR domains. T-DNA insertion mutants and CRISPR lines of Pb3 showed significantly reduced panicle blast resistance. These results indicate that Pb3 is a panicle blast resistance gene and GWAS is a rapid method for identifying panicle blast resistance in rice.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
23
Issue :
22
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.2f654d59e6564e7596727dcf981795a8
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms232214032