Back to Search Start Over

ADAR2 Protein Is Associated with Overall Survival in GBM Patients and Its Decrease Triggers the Anchorage-Independent Cell Growth Signature

Authors :
Valeriana Cesarini
Domenico Alessandro Silvestris
Federica Galeano
Valentina Tassinari
Maurizio Martini
Franco Locatelli
Angela Gallo
Source :
Biomolecules, Vol 12, Iss 8, p 1142 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Background: Epitranscriptomic mechanisms, such as A-to-I RNA editing mediated by ADAR deaminases, contribute to cancer heterogeneity and patients’ stratification. ADAR enzymes can change the sequence, structure, and expression of several RNAs, affecting cancer cell behavior. In glioblastoma, an overall decrease in ADAR2 RNA level/activity has been reported. However, no data on ADAR2 protein levels in GBM patient tissues are available; and most data are based on ADARs overexpression experiments. Methods: We performed IHC analysis on GBM tissues and correlated ADAR2 levels and patients’ overall survival. We silenced ADAR2 in GBM cells, studied cell behavior, and performed a gene expression/editing analysis. Results: GBM tissues do not all show a low/no ADAR2 level, as expected by previous studies. Although, different amounts of ADAR2 protein were observed in different patients, with a low level correlating with a poor patient outcome. Indeed, reducing the endogenous ADAR2 protein in GBM cells promotes cell proliferation and migration and changes the cell’s program to an anchorage-independent growth mode. In addition, deep-seq data and bioinformatics analysis indicated multiple RNAs are differently expressed/edited upon siADAR2. Conclusion: ADAR2 protein is an important deaminase in GBM and its amount correlates with patient prognosis.

Details

Language :
English
ISSN :
2218273X
Volume :
12
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Biomolecules
Publication Type :
Academic Journal
Accession number :
edsdoj.2f0b92a1604f4260aa52a4e16ef66b76
Document Type :
article
Full Text :
https://doi.org/10.3390/biom12081142