Back to Search Start Over

Noninvasive acoustic time-of-flight measurements in heated, hermetically-sealed high explosives using a convolutional neural network

Authors :
John Greenhall
David Zerkle
Eric Sean Davis
Robert Broilo
Cristian Pantea
Source :
Machine Learning with Applications, Vol 9, Iss , Pp 100391- (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

We present a data-driven technique for measuring the time-of-flight through material sealed within a container. Time-of-flight measurement provides a noninvasive means of quantifying the sound speed profile within a material by transmitting an acoustic burst and then measuring the time required for the burst to arrive at an opposing receiver. In a hermetically-sealed cylindrical container, a portion of the acoustic energy propagates through the material as a bulk wave, while the remainder of the acoustic energy propagates around the container walls as guided waves. As a result, interference from the guided waves obscures the bulk arrival, inhibiting measurement of the sound speed. The technique uses a Convolutional Neural Network (CNN) to identify critical features in the measured waveforms and identify bulk wave arrivals. We demonstrate this time-of-flight measurement technique on high explosive-filled containers as they are heated from room temperature to detonation. This is a particularly challenging application for acoustic time-of-flight measurements as the high explosives have significant sound speed gradients as they undergo heating, and they lead to significant attenuation of the bulk wave, as opposed to the guided waves, which do not suffer significant attenuation. We characterize the performance of the CNN as a function of the high explosive temperature and as a function of the CNN hyperparameters. We then provide physical insight into the error trends.

Details

Language :
English
ISSN :
26668270
Volume :
9
Issue :
100391-
Database :
Directory of Open Access Journals
Journal :
Machine Learning with Applications
Publication Type :
Academic Journal
Accession number :
edsdoj.2ec523d2a92c43ddac54e89b9758f79d
Document Type :
article
Full Text :
https://doi.org/10.1016/j.mlwa.2022.100391