Back to Search Start Over

Polarization multiplexing multichannel high-Q terahertz sensing system

Authors :
Xiuyu Wang
Xiaoman Wang
Qun Ren
Haocheng Cai
Jihong Xin
Yuxin Lang
Xiaofei Xiao
Zhihao Lan
Jian Wei You
Wei E. I. Sha
Source :
Frontiers in Nanotechnology, Vol 5 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

Terahertz functional devices with high-Q factor play an important role in spectral sensing, security imaging, and wireless communication. The reported terahertz devices based on the electromagnetic induction transparency (EIT) effect cannot meet the needs of high-Q in practical applications due to the low-Q factor. Therefore, to increase the Q-factor of resonance, researchers introduced the concept of bound state in the continuum (BIC). In the quasi-BIC state, the metasurface can be excited by the incident wave and provide resonance with a high-Q factor because the condition that the resonant state of the BIC state is orthogonal is not satisfied. The split ring resonator (SRR) is one of the most representative artificial microstructures in the metasurface field, and it shows great potential in BIC. In this paper, based on the classical single-SRR array structure, we combine the large and small SRR and change the resonance mode of the inner and outer SRR by changing the outer radius of the inner SRR. The metasurface based on parameter-tuned BIC verified that the continuous modulation of parameters in a system could make a pair of resonant states strongly coupled, and the coherent cancellation of the resonant states will cause the linewidth of one of the resonant states to disappear, thus forming BIC. Compared with the single-SRR array metasurface based on symmetry-protected BIC, the dual-SRR array metasurface designed in this paper has multiple accidental BICs and realizes multichannel multiplexing of X-polarization and Y-polarization. It provides a brilliant platform for high-sensitivity optical sensor array, low threshold laser and efficient optical harmonic generation.

Details

Language :
English
ISSN :
26733013
Volume :
5
Database :
Directory of Open Access Journals
Journal :
Frontiers in Nanotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.2eb06ef59a1c46a182a52cbb757fef18
Document Type :
article
Full Text :
https://doi.org/10.3389/fnano.2023.1112346