Back to Search Start Over

On the maximum ABC index of bipartite graphs without pendent vertices

Authors :
Shao Zehui
Wu Pu
Jiang Huiqin
Sheikholeslami S.M.
Wang Shaohui
Source :
Open Chemistry, Vol 18, Iss 1, Pp 39-49 (2020)
Publication Year :
2020
Publisher :
De Gruyter, 2020.

Abstract

For a simple graph G, the atom–bond connectivity index (ABC) of G is defined as ABC(G) = ∑uv∈ E(G)d(u)+d(v)−2d(u)d(v), $\sum_{uv\in{}E(G)} \sqrt{\frac{d(u)+d(v)-2}{d(u)d(v)}},$where d(v) denotes the degree of vertex v of G. In this paper, we prove that for any bipartite graph G of order n ≥ 6, size 2n − 3 with δ(G) ≥ 2, ABC(G)≤ 2(n−6)+23(n−2)n−3+2, $ABC(G)\leq{}\sqrt{2}(n-6)+2\sqrt{\frac{3(n-2)}{n-3}}+2,$and we characterize all extreme bipartite graphs.

Details

Language :
English
ISSN :
23915420
Volume :
18
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Open Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.2e0cc9aaae542c7847aac3430162686
Document Type :
article
Full Text :
https://doi.org/10.1515/chem-2020-0002