Back to Search
Start Over
On the maximum ABC index of bipartite graphs without pendent vertices
- Source :
- Open Chemistry, Vol 18, Iss 1, Pp 39-49 (2020)
- Publication Year :
- 2020
- Publisher :
- De Gruyter, 2020.
-
Abstract
- For a simple graph G, the atom–bond connectivity index (ABC) of G is defined as ABC(G) = ∑uv∈ E(G)d(u)+d(v)−2d(u)d(v), $\sum_{uv\in{}E(G)} \sqrt{\frac{d(u)+d(v)-2}{d(u)d(v)}},$where d(v) denotes the degree of vertex v of G. In this paper, we prove that for any bipartite graph G of order n ≥ 6, size 2n − 3 with δ(G) ≥ 2, ABC(G)≤ 2(n−6)+23(n−2)n−3+2, $ABC(G)\leq{}\sqrt{2}(n-6)+2\sqrt{\frac{3(n-2)}{n-3}}+2,$and we characterize all extreme bipartite graphs.
Details
- Language :
- English
- ISSN :
- 23915420
- Volume :
- 18
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Open Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.2e0cc9aaae542c7847aac3430162686
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/chem-2020-0002