Back to Search Start Over

Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin

Authors :
Yiping Wu
Xiaowei Yin
Guoyi Zhou
L. Adrian Bruijnzeel
Aiguo Dai
Fan Wang
Pierre Gentine
Guangchuang Zhang
Yanni Song
Decheng Zhou
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Droughts or floods are usually attributed to precipitation deficits or surpluses, both of which may become more frequent and severe under continued global warming. Concurring large-scale droughts in the Southwest and flooding in the Southeast of China in recent decades have attracted considerable attention, but their causes and interrelations are not well understood. Here, we examine spatiotemporal changes in hydrometeorological variables and investigate the mechanism underlying contrasting soil dryness/wetness patterns over a 54-year period (1965–2018) across a representative mega-watershed in South China—the West River Basin. We demonstrate that increasing rainfall intensity leads to severe drying upstream with decreases in soil water storage, water yield, and baseflow, versus increases therein downstream. Our study highlights a simultaneous occurrence of increased drought and flooding risks due to contrasting interactions between rainfall intensification and topography across the river basin, implying increasingly vulnerable water and food security under continued climate change.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.2dc7d62e9fb6488aa458a5b43bf02f7b
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-44562-8