Back to Search Start Over

Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke

Authors :
Martijn P. Vlaar
Teodoro Solis-Escalante
Julius P. A. Dewald
Erwin E. H. van Wegen
Alfred C. Schouten
Gert Kwakkel
Frans C. T. van der Helm
on behalf of the 4D-EEG consortium
Source :
Journal of NeuroEngineering and Rehabilitation, Vol 14, Iss 1, Pp 1-15 (2017)
Publication Year :
2017
Publisher :
BMC, 2017.

Abstract

Abstract Background Cortical damage after stroke can drastically impair sensory and motor function of the upper limb, affecting the execution of activities of daily living and quality of life. Motor impairment after stroke has been thoroughly studied, however sensory impairment and its relation to movement control has received less attention. Integrity of the somatosensory system is essential for feedback control of human movement, and compromised integrity due to stroke has been linked to sensory impairment. Methods The goal of this study is to assess the integrity of the somatosensory system in individuals with chronic hemiparetic stroke with different levels of sensory impairment, through a combination of robotic joint manipulation and high-density electroencephalogram (EEG). A robotic wrist manipulator applied continuous periodic disturbances to the affected limb, providing somatosensory (proprioceptive and tactile) stimulation while challenging task execution. The integrity of the somatosensory system was evaluated during passive and active tasks, defined as ‘relaxed wrist’ and ‘maintaining 20% maximum wrist flexion’, respectively. The evoked cortical responses in the EEG were quantified using the power in the averaged responses and their signal-to-noise ratio. Results Thirty individuals with chronic hemiparetic stroke and ten unimpaired individuals without stroke participated in this study. Participants with stroke were classified as having severe, mild, or no sensory impairment, based on the Erasmus modification of the Nottingham Sensory Assessment. Under passive conditions, wrist manipulation resulted in contralateral cortical responses in unimpaired and chronic stroke participants with mild and no sensory impairment. In participants with severe sensory impairment the cortical responses were strongly reduced in amplitude, which related to anatomical damage. Under active conditions, participants with mild sensory impairment showed reduced responses compared to the passive condition, whereas unimpaired and chronic stroke participants without sensory impairment did not show this reduction. Conclusions Robotic continuous joint manipulation allows studying somatosensory cortical evoked responses during the execution of meaningful upper limb control tasks. Using such an approach it is possible to quantitatively assess the integrity of sensory pathways; in the context of movement control this provides additional information required to develop more effective neurorehabilitation therapies.

Details

Language :
English
ISSN :
17430003
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of NeuroEngineering and Rehabilitation
Publication Type :
Academic Journal
Accession number :
edsdoj.2d0771ffe1ea4e88a2846efdf050ac42
Document Type :
article
Full Text :
https://doi.org/10.1186/s12984-017-0240-3