Back to Search
Start Over
Hydroxylated TiO2-induced high-density Ni clusters for breaking the activity-selectivity trade-off of CO2 hydrogenation
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract The reverse water gas shift reaction can be considered as a promising route to mitigate global warming by converting CO2 into syngas in a large scale, while it is still challenging for non-Cu-based catalysts to break the trade-off between activity and selectivity. Here, the relatively high loading of Ni species is highly dispersed on hydroxylated TiO2 through the strong Ni and −OH interactions, thereby inducing the formation of rich and stable Ni clusters (~1 nm) on anatase TiO2 during the reverse water gas shift reaction. This Ni cluster/TiO2 catalyst shows a simultaneous high CO2 conversion and high CO selectivity. Comprehensive characterizations and theoretical calculations demonstrate Ni cluster/TiO2 interfacial sites with strong CO2 activation capacity and weak CO adsorption are responsible for its unique catalytic performances. This work disentangles the activity-selectivity trade-off of the reverse water gas shift reaction, and emphasizes the importance of metal−OH interactions on surface.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.2d05a2e084024d93bfcb4060e045fd44
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-52547-4