Back to Search Start Over

Key role of e g * band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism

Authors :
Haoyin Zhong
Qi Zhang
Junchen Yu
Xin Zhang
Chao Wu
Hang An
Yifan Ma
Hao Wang
Jun Zhang
Yong-Wei Zhang
Caozheng Diao
Zhi Gen Yu
Shibo Xi
Xiaopeng Wang
Junmin Xue
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-10 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract A coupled oxygen evolution mechanism (COM) during oxygen evolution reaction (OER) has been reported in nickel oxyhydroxides (NiOOH)-based materials by realizing e g * band (3d electron states with e g symmetry) broadening and light irradiation. However, the link between the e g * band broadening extent and COM-based OER activities remains unclear. Here, Ni1-xFexOOH (x = 0, 0.05, 0,2) are prepared to investigate the underlying mechanism governing COM-based activities. It is revealed that in low potential region, realizing stronger e g * band broadening could facilitate the *OH deprotonation. Meanwhile, in high potential region where the photon utilization is the rate-determining step, a stronger e g * band broadening would widen the non-overlapping region between d z 2 and a 1g * orbitals, thereby enhancing photon utilization efficiency. Consequently, a stronger e g * band broadening could effectuate more efficient OER activities. Moreover, we demonstrate the universality of this concept by extending it to reconstruction-derived X-NiOOH (X = NiS2, NiSe2, Ni4P5) with varying extent of e g * band broadening. Such an understanding of the COM would provide valuable guidance for the future development of highly efficient OER electrocatalysts.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.2cea8eb616bd49c79472874c9bb4c390
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-43302-2