Back to Search Start Over

High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition

Authors :
Zhang Jian
Liu Huize
Zuo Jiabin
Source :
Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 18-34 (2023)
Publication Year :
2023
Publisher :
De Gruyter, 2023.

Abstract

In this article, we study the following general Kirchhoff type equation: −M∫R3∣∇u∣2dxΔu+u=a(x)f(u)inR3,-M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla u{| }^{2}{\rm{d}}x\right)\Delta u+u=a\left(x)f\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where infR+M>0{\inf }_{{{\mathbb{R}}}^{+}}M\gt 0 and ff is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.

Details

Language :
English
ISSN :
2191950X
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Advances in Nonlinear Analysis
Publication Type :
Academic Journal
Accession number :
edsdoj.2cd83c277cda4197b0d23965b3171862
Document Type :
article
Full Text :
https://doi.org/10.1515/anona-2022-0311