Back to Search
Start Over
High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition
- Source :
- Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 18-34 (2023)
- Publication Year :
- 2023
- Publisher :
- De Gruyter, 2023.
-
Abstract
- In this article, we study the following general Kirchhoff type equation: −M∫R3∣∇u∣2dxΔu+u=a(x)f(u)inR3,-M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla u{| }^{2}{\rm{d}}x\right)\Delta u+u=a\left(x)f\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where infR+M>0{\inf }_{{{\mathbb{R}}}^{+}}M\gt 0 and ff is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.
Details
- Language :
- English
- ISSN :
- 2191950X
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Advances in Nonlinear Analysis
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.2cd83c277cda4197b0d23965b3171862
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/anona-2022-0311