Back to Search Start Over

Host genetics and COVID-19 severity: increasing the accuracy of latest severity scores by Boolean quantum features

Authors :
Gabriele Martelloni
Alessio Turchi
Chiara Fallerini
Andrea Degl’Innocenti
Margherita Baldassarri
Simona Olmi
Simone Furini
Alessandra Renieri
GEN-COVID Multicenter study
Francesca Mari
Sergio Daga
Ilaria Meloni
Mirella Bruttini
Susanna Croci
Mirjam Lista
Debora Maffeo
Elena Pasquinelli
Giulia Brunelli
Kristina Zguro
Viola Bianca Serio
Enrica Antolini
Simona Letizia Basso
Samantha Minetto
Giulia Rollo
Martina Rozza
Angela Rina
Rossella Tita
Maria Antonietta Mencarelli
Caterina Lo Rizzo
Anna Maria Pinto
Francesca Ariani
Francesca Montagnani
Mario Tumbarello
Ilaria Rancan
Massimiliano Fabbiani
Elena Bargagli
Laura Bergantini
Miriana d’Alessandro
Paolo Cameli
David Bennett
Federico Anedda
Simona Marcantonio
Sabino Scolletta
Federico Franchi
Maria Antonietta Mazzei
Susanna Guerrini
Edoardo Conticini
Luca Cantarini
Bruno Frediani
Danilo Tacconi
Chiara Spertilli Raffaelli
Arianna Emiliozzi
Marco Feri
Alice Donati
Raffaele Scala
Luca Guidelli
Genni Spargi
Marta Corridi
Cesira Nencioni
Leonardo Croci
Gian Piero Caldarelli
Davide Romani
Paolo Piacentini
Maria Bandini
Elena Desanctis
Silvia Cappelli
Anna Canaccini
Agnese Verzuri
Valentina Anemoli
Manola Pisani
Agostino Ognibene
Maria Lorubbio
Alessandro Pancrazzi
Massimo Vaghi
Antonella D’Arminio Monforte
Federica Gaia Miraglia
Mario U. Mondelli
Stefania Mantovani
Raffaele Bruno
Marco Vecchia
Marcello Maffezzoni
Enrico Martinelli
Massimo Girardis
Stefano Busani
Sophie Venturelli
Andrea Cossarizza
Andrea Antinori
Alessandra Vergori
Stefano Rusconi
Matteo Siano
Arianna Gabrieli
Agostino Riva
Daniela Francisci
Elisabetta Schiaroli
Carlo Pallotto
Saverio Giuseppe Parisi
Monica Basso
Sandro Panese
Stefano Baratti
Pier Giorgio Scotton
Francesca Andretta
Mario Giobbia
Renzo Scaggiante
Francesca Gatti
Francesco Castelli
Eugenia Quiros-Roldan
Melania Degli Antoni
Isabella Zanella
Matteo della Monica
Carmelo Piscopo
Mario Capasso
Roberta Russo
Immacolata Andolfo
Achille Iolascon
Giuseppe Fiorentino
Massimo Carella
Marco Castori
Giuseppe Merla
Gabriella Maria Squeo
Filippo Aucella
Pamela Raggi
Rita Perna
Matteo Bassetti
Antonio Di Biagio
Maurizio Sanguinetti
Luca Masucci
Alessandra Guarnaccia
Serafina Valente
Alex Di Florio
Marco Mandalà
Alessia Giorli
Lorenzo Salerni
Patrizia Zucchi
Pierpaolo Parravicini
Elisabetta Menatti
Tullio Trotta
Ferdinando Giannattasio
Gabriella Coiro
Fabio Lena
Gianluca Lacerenza
Cristina Mussini
Luisa Tavecchia
Lia Crotti
Gianfranco Parati
Roberto Menè
Maurizio Sanarico
Marco Gori
Francesco Raimondi
Alessandra Stella
Filippo Biscarini
Tiziana Bachetti
Maria Teresa La Rovere
Maurizio Bussotti
Serena Ludovisi
Katia Capitani
Simona Dei
Sabrina Ravaglia
Annarita Giliberti
Giulia Gori
Rosangela Artuso
Elena Andreucci
Angelica Pagliazzi
Erika Fiorentini
Antonio Perrella
Francesco Bianchi
Paola Bergomi
Emanuele Catena
Riccardo Colombo
Sauro Luchi
Giovanna Morelli
Paola Petrocelli
Sarah Iacopini
Sara Modica
Silvia Baroni
Giulia Micheli
Marco Falcone
Donato Urso
Giusy Tiseo
Tommaso Matucci
Davide Grassi
Claudio Ferri
Franco Marinangeli
Francesco Brancati
Antonella Vincenti
Valentina Borgo
Stefania Lombardi
Mirco Lenzi
Massimo Antonio Di Pietro
Francesca Vichi
Benedetta Romanin
Letizia Attala
Cecilia Costa
Andrea Gabbuti
Alessio Bellucci
Marta Colaneri
Patrizia Casprini
Cristoforo Pomara
Massimiliano Esposito
Roberto Leoncini
Michele Cirianni
Lucrezia Galasso
Marco Antonio Bellini
Chiara Gabbi
Nicola Picchiotti
Source :
Frontiers in Genetics, Vol 15 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

The impact of common and rare variants in COVID-19 host genetics has been widely studied. In particular, in Fallerini et al. (Human genetics, 2022, 141, 147–173), common and rare variants were used to define an interpretable machine learning model for predicting COVID-19 severity. First, variants were converted into sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. After that, the Boolean features, selected by these logistic models, were combined into an Integrated PolyGenic Score (IPGS), which offers a very simple description of the contribution of host genetics in COVID-19 severity.. IPGS leads to an accuracy of 55%–60% on different cohorts, and, after a logistic regression with both IPGS and age as inputs, it leads to an accuracy of 75%. The goal of this paper is to improve the previous results, using not only the most informative Boolean features with respect to the genetic bases of severity but also the information on host organs involved in the disease. In this study, we generalize the IPGS adding a statistical weight for each organ, through the transformation of Boolean features into “Boolean quantum features,” inspired by quantum mechanics. The organ coefficients were set via the application of the genetic algorithm PyGAD, and, after that, we defined two new integrated polygenic scores (IPGSph1 and IPGSph2). By applying a logistic regression with both IPGS, (IPGSph2 (or indifferently IPGSph1) and age as inputs, we reached an accuracy of 84%–86%, thus improving the results previously shown in Fallerini et al. (Human genetics, 2022, 141, 147–173) by a factor of 10%.

Details

Language :
English
ISSN :
16648021
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Genetics
Publication Type :
Academic Journal
Accession number :
edsdoj.2ccef210408b4a0bb20150b784f90208
Document Type :
article
Full Text :
https://doi.org/10.3389/fgene.2024.1362469