Back to Search Start Over

Surrogate Model-Based Parameter Tuning of Simulated Annealing Algorithm for the Shape Optimization of Automotive Rubber Bumpers

Authors :
Dávid Huri
Tamás Mankovits
Source :
Applied Sciences, Vol 12, Iss 11, p 5451 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

A design engineer has to deal with increasingly complex design tasks on a daily basis, for which the available design time is shrinking. Market competitiveness can be improved by using optimization if the design process can be automated. If there is limited information about the behavior of the objective function, global search methods such as simulated annealing (SA) should be used. This algorithm requires the selection of a number of parameters based on the task. A procedure for reducing the time spent on tuning the SA algorithm for computationally expensive, simulation-driven optimization tasks was developed. The applicability of the method was demonstrated by solving a shape optimization problem of a rubber bumper built into air spring structures of lorries. Due to the time-consuming objective function call, a support vector regression (SVR) surrogate model was used to test the performance of the optimization algorithm. To perform the SVR training, samples were taken using the maximin Latin hypercube design. The SA algorithm with an adaptive search space and different cooling schedules was implemented. Subsequently, the SA parameters were fine-tuned using the trained SVR surrogate model. An optimal design was found using the adapted SA algorithm with negligible error from a technical aspect.

Details

Language :
English
ISSN :
20763417
Volume :
12
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.2c7ac37ced0c4fa1a8e27a2dfbd761a0
Document Type :
article
Full Text :
https://doi.org/10.3390/app12115451