Back to Search Start Over

Generation of a DSF-Guided Refolded Bacterially Expressed Hemagglutinin Ectodomain of Influenza Virus A/Puerto Rico/8/1934 H1N1 as a Model for Influenza Vaccine Antigens

Authors :
Vlad-Constantin Tofan
Andreea-Laura Ermeneanu
Iuliana Caraș
Alina Lenghel
Irina-Elena Ionescu
Cătălin Țucureanu
Claudiu Gal
Crina-Georgeta Stăvaru
Adrian Onu
Source :
Vaccines, Vol 11, Iss 10, p 1520 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Influenza virus infections represent an ongoing public health threat as well as an economic burden. Although seasonal influenza vaccines have been available for some decades, efforts are being made to generate new efficient, flexible, and cost-effective technologies to be transferred into production. Our work describes the development of a model influenza hemagglutinin antigen that is capable of inducing protection against viral challenge in mice. High amounts of the H1 hemagglutinin ectodomain, HA18–528, were expressed in a bacterial system as insoluble inclusion bodies. Solubilization was followed by a thorough differential scanning fluorimetry (DSF)-guided optimization of refolding, which allows for fast and reliable screening of several refolding conditions, yielding tens of milligrams/L of folded protein. Structural and functional analysis revealed native-like folding as well as the presence of a mix of monomers and oligomers in solution. Mice immunized with HA18–528 were protected when exposed to influenza A virus as opposed to mice that received full-length denatured protein. Sera of mice immunized with HA18–528 showed both high titers of antigen-specific IgG1 and IgG2a isotypes as well as viral neutralization activity. These results prove the feasibility of the recombinant bacterial expression system coupled with DSF-guided refolding in providing influenza hemagglutinin for vaccine development.

Details

Language :
English
ISSN :
11101520 and 2076393X
Volume :
11
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Vaccines
Publication Type :
Academic Journal
Accession number :
edsdoj.2c4ac2a6125d452789b9e22e41a66bd2
Document Type :
article
Full Text :
https://doi.org/10.3390/vaccines11101520