Back to Search Start Over

Synthesis and redox catalysis of Carbodiphosphorane ligated stannylene

Authors :
Zhuchunguang Liu
Zhijun Wang
Huan Mu
Yihan Zhou
Jiliang Zhou
Zhaowen Dong
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-8 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Heavier group 14 carbene analogues, exhibiting transition-metal-like behavior, display remarkable capability for small molecule activation and coordination chemistry. However, their application in redox catalysis remains elusive. In this paper, we report the synthesis and isolation of a stannylene with carbodiphosphorane ligand. The nucleophilic reactivity at the divalent tin center is elucidated by computational and reactivity studies. Moreover, this stannylene exhibits catalytic activity in the hydrodefluorination reaction of fluoroarenes. Mechanistic investigations into the elementary steps confirm a SnII/SnIV redox cycle involving C–F oxidative addition, F/H ligand metathesis, and C–H reductive elimination. This low-valent SnII catalytic system resembles the classical transition metal catalysis. Notably, this represents metallomimetic redox catalysis utilizing carbene analogue with heavier group 14 element as a catalyst.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.2c37e36936da489fb96c348ef15f61d6
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-54321-y