Back to Search Start Over

Neurological recovery and antioxidant effect of erythropoietin for spinal cord injury: A systematic review and meta-analysis

Authors :
Ya-yun Zhang
Min Yao
Ke Zhu
Rui-rui Xue
Jin-hai Xu
Xue-jun Cui
Wen Mo
Source :
Frontiers in Neurology, Vol 13 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

BackgroundTo critically evaluate the neurological recovery effects and antioxidant effects of erythropoietin (EPO) in rat models of spinal cord injury (SCI).MethodsThe PubMed, EMBASE, MEDLINE, ScienceDirect, and Web of Science were searched for animal experiments applying EPO to treat SCI to January 2022. We included studies which examined neurological function by the Basso, Beattie, and Bresnahan (BBB) scale, as well as cavity area and spared area, and determining the molecular-biological analysis of antioxidative effects by malondialdehyde (MDA) levels in spinal cord tissues. Meta-analysis were performed with Review Manager 5.4 software.ResultsA total of 33 studies were included in this review. The results of the meta-analysis showed that SCI rats receiving EPO therapy showed a significant locomotor function recovery after 14 days compared with control, then the superiority of EPO therapy maintained to 28 days from BBB scale. Compared with the control group, the cavity area was reduced [4 studies, weighted mean difference (WMD) = −16.65, 95% CI (−30.74 to −2.55), P = 0.02] and spared area was increased [3 studies, WMD =11.53, 95% CI (1.34 to 21.72), P = 0.03] by EPO. Meanwhile, MDA levels [2 studies, WMD = −0.63 (−1.09 to −0.18), P = 0.007] were improved in the EPO treatment group compared with control, which indicated its antioxidant effect. The subgroup analysis recommended 5,000 UI/kg is the most effective dose [WMD = 4.05 (2.23, 5.88), P < 0.0001], although its effect was not statistically different from that of 1,000 UI/kg. Meanwhile, the different rat strains (Sprague-Dawley vs. Wistar), and models of animals, as well as administration method (single or multiple administration) of EPO did not affect the neuroprotective effect of EPO for SCI.ConclusionsThis systematic review indicated that EPO can promote the recovery of the locomotor function of SCI rats. The mechanism exploration of EPO needs to be verified by experiments, and then carefully designed randomized controlled trials are needed to explore its neural recovery effects.

Details

Language :
English
ISSN :
16642295
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Frontiers in Neurology
Publication Type :
Academic Journal
Accession number :
edsdoj.2c04a41a0f2943c4b859ab803fe9fb00
Document Type :
article
Full Text :
https://doi.org/10.3389/fneur.2022.925696