Back to Search Start Over

Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics.

Authors :
Joseph McEvoy
Rebecca A Baillie
Hongjie Zhu
Peter Buckley
Matcheri S Keshavan
Henry A Nasrallah
George G Dougherty
Jeffrey K Yao
Rima Kaddurah-Daouk
Source :
PLoS ONE, Vol 8, Iss 7, p e68717 (2013)
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

There is a critical need for mapping early metabolic changes in schizophrenia to capture failures in regulation of biochemical pathways and networks. This information could provide valuable insights about disease mechanisms, trajectory of disease progression, and diagnostic biomarkers. We used a lipidomics platform to measure individual lipid species in 20 drug-naïve patients with a first episode of schizophrenia (FE group), 20 patients with chronic schizophrenia that had not adhered to prescribed medications (RE group), and 29 race-matched control subjects without schizophrenia. Lipid metabolic profiles were evaluated and compared between study groups and within groups before and after treatment with atypical antipsychotics, risperidone and aripiprazole. Finally, we mapped lipid profiles to n3 and n6 fatty acid synthesis pathways to elucidate which enzymes might be affected by disease and treatment. Compared to controls, the FE group showed significant down-regulation of several n3 polyunsaturated fatty acids (PUFAs), including 20:5n3, 22:5n3, and 22:6n3 within the phosphatidylcholine and phosphatidylethanolamine lipid classes. Differences between FE and controls were only observed in the n3 class PUFAs; no differences where noted in n6 class PUFAs. The RE group was not significantly different from controls, although some compositional differences within PUFAs were noted. Drug treatment was able to correct the aberrant PUFA levels noted in FE patients, but changes in re patients were not corrective. Treatment caused increases in both n3 and n6 class lipids. These results supported the hypothesis that phospholipid n3 fatty acid deficits are present early in the course of schizophrenia and tend not to persist throughout its course. These changes in lipid metabolism could indicate a metabolic vulnerability in patients with schizophrenia that occurs early in development of the disease.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
7
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.2be2a32226b64501ba4c7ca698675037
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0068717