Back to Search Start Over

An open source knowledge graph ecosystem for the life sciences

Authors :
Tiffany J. Callahan
Ignacio J. Tripodi
Adrianne L. Stefanski
Luca Cappelletti
Sanya B. Taneja
Jordan M. Wyrwa
Elena Casiraghi
Nicolas A. Matentzoglu
Justin Reese
Jonathan C. Silverstein
Charles Tapley Hoyt
Richard D. Boyce
Scott A. Malec
Deepak R. Unni
Marcin P. Joachimiak
Peter N. Robinson
Christopher J. Mungall
Emanuele Cavalleri
Tommaso Fontana
Giorgio Valentini
Marco Mesiti
Lucas A. Gillenwater
Brook Santangelo
Nicole A. Vasilevsky
Robert Hoehndorf
Tellen D. Bennett
Patrick B. Ryan
George Hripcsak
Michael G. Kahn
Michael Bada
William A. Baumgartner
Lawrence E. Hunter
Source :
Scientific Data, Vol 11, Iss 1, Pp 1-22 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Translational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data, but researchers face significant integration challenges. Knowledge graphs (KGs) are used to model complex phenomena, and methods exist to construct them automatically. However, tackling complex biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited choices among knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL endpoint resources and abstraction algorithms), and benchmarks (e.g., prebuilt KGs). We evaluated the ecosystem by systematically comparing it to existing open-source KG construction methods and by analyzing its computational performance when used to construct 12 different large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully customizable KGs without compromising performance or usability.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20524463
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Data
Publication Type :
Academic Journal
Accession number :
edsdoj.2ba11bcf971c40478fb1f6a852218703
Document Type :
article
Full Text :
https://doi.org/10.1038/s41597-024-03171-w