Back to Search Start Over

Understanding the relationship between pore size, surface charge density, and Cu2+ adsorption in mesoporous silica

Authors :
Yanhui Niu
Wenbin Yu
Shuguang Yang
Quan Wan
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract This research delved into the influence of mesoporous silica’s surface charge density on the adsorption of Cu2+. The synthesis of mesoporous silica employed the hydrothermal method, with pore size controlled by varying the length of trimethylammonium bromide (CnTAB, n = 12, 14, 16) chains. Gas adsorption techniques and transmission electron microscopy characterized the mesoporous silica structure. Surface charge densities of the mesoporous silica were determined through potentiometric titration, while surface hydroxyl densities were assessed using the thermogravimetric method. Subsequently, batch adsorption experiments were conducted to study the adsorption of Cu2+ in mesoporous silica, and the process was comprehensively analyzed using Atomic absorption spectrometry (AAS), Fourier transform infrared (FTIR), and L3 edge X-ray absorption near edge structure (XANES). The research findings suggest a positive correlation between the pore size of mesoporous silica, its surface charge density, and the adsorption capacity for Cu2+. More specifically, as the pore size increases within the 3–4.1 nm range, the surface charge density and the adsorption capacity for Cu2+ also increase. Our findings provide valuable insights into the relationship between the physicochemical properties of mesoporous silica and the adsorption behavior of Cu2+, offering potential applications in areas such as environmental remediation and catalysis.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.2b5995e544e54510a6c9c1a4fc9a16e5
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-64337-5