Back to Search Start Over

Loss of FAM111B protease mutated in hereditary fibrosing poikiloderma negatively regulates telomere length

Authors :
Maciej Kliszczak
Daniela Moralli
Julia D. Jankowska
Paulina Bryjka
Lamia Subha Meem
Tomas Goncalves
Svenja S. Hester
Roman Fischer
David Clynes
Catherine M. Green
Source :
Frontiers in Cell and Developmental Biology, Vol 11 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

Hereditary fibrosing poikiloderma (HFP) is a rare human dominant negative disorder caused by mutations in the FAM111B gene that encodes a nuclear trypsin-like serine protease. HFP patients present with symptoms including skin abnormalities, tendon contractures, myopathy and lung fibrosis. We characterized the cellular roles of human FAM111B using U2OS and MCF7 cell lines and report here that the protease interacts with components of the nuclear pore complex. Loss of FAM111B expression resulted in abnormal nuclear shape and reduced telomeric DNA content suggesting that FAM111B protease is required for normal telomere length; we show that this function is independent of telomerase or recombination driven telomere extension. Even though FAM111B-deficient cells were proficient in DNA repair, they showed hallmarks of genomic instability such as increased levels of micronuclei and ultra-fine DNA bridges. When mutated as in HFP, FAM111B was more frequently localized to the nuclear envelope, suggesting that accumulation of the mutated protease at the nuclear periphery may drive the disease pathology.

Details

Language :
English
ISSN :
2296634X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cell and Developmental Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.2b3ff36c5f3d4ac2a5aff013ae00c0a5
Document Type :
article
Full Text :
https://doi.org/10.3389/fcell.2023.1175069