Back to Search Start Over

Besting the Black-Box: Barrier Zones for Adversarial Example Defense

Authors :
Kaleel Mahmood
Phuong Ha Nguyen
Lam M. Nguyen
Thanh Nguyen
Marten Van Dijk
Source :
IEEE Access, Vol 10, Pp 1451-1474 (2022)
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

Adversarial machine learning defenses have primarily been focused on mitigating static, white-box attacks. However, it remains an open question whether such defenses are robust under an adaptive black-box adversary. In this paper, we specifically focus on the black-box threat model and make the following contributions: First we develop an enhanced adaptive black-box attack which is experimentally shown to be $\geq 30\%$ more effective than the original adaptive black-box attack proposed by Papernot et al. For our second contribution, we test 10 recent defenses using our new attack and propose our own black-box defense (barrier zones). We show that our defense based on barrier zones offers significant improvements in security over state-of-the-art defenses. This improvement includes greater than 85% robust accuracy against black-box boundary attacks, transfer attacks and our new adaptive black-box attack, for the datasets we study. For completeness, we verify our claims through extensive experimentation with 10 other defenses using three adversarial models (14 different black-box attacks) on two datasets (CIFAR-10 and Fashion-MNIST).

Details

Language :
English
ISSN :
21693536
Volume :
10
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.2b1e669f8843078d1205333e8fa23c
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2021.3138966