Back to Search Start Over

Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean

Authors :
Wei-Mao Qian
Zai-Yin He
Hong-Wei Zhang
Yu-Ming Chu
Source :
Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-13 (2019)
Publication Year :
2019
Publisher :
SpringerOpen, 2019.

Abstract

Abstract In the article, we prove that λ1=1/2+[(2+log(1+2))/2]1/ν−1/2 $\lambda _{1}=1/2+\sqrt{ [ (\sqrt{2}+ \log (1+\sqrt{2}) )/2 ]^{1/\nu }-1}/2$, μ1=1/2+6ν/(12ν) $\mu _{1}=1/2+\sqrt{6 \nu }/(12\nu )$, λ2=1/2+[(π+2)/4]1/ν−1/2 $\lambda _{2}=1/2+\sqrt{ [(\pi +2)/4 ] ^{1/\nu }-1}/2$ and μ2=1/2+3ν/(6ν) $\mu _{2}=1/2+\sqrt{3\nu }/(6\nu )$ are the best possible parameters on the interval [1/2,1] $[1/2, 1]$ such that the double inequalities Cν[λ1x+(1−λ1)y,λ1y+(1−λ1)x]A1−ν(x,y)0 $x, y>0$ with x≠y $x\neq y$ and ν∈[1/2,∞) $\nu \in [1/2, \infty )$, where A(x,y) $A(x, y)$ is the arithmetic mean, C(x,y) $C(x, y)$ is the contraharmonic mean, and RQA(x,y) $\mathcal{R}_{QA}(x, y)$ and RAQ(x,y) $\mathcal{R}_{AQ}(x, y)$ are two Neuman means.

Details

Language :
English
ISSN :
1029242X
Volume :
2019
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Inequalities and Applications
Publication Type :
Academic Journal
Accession number :
edsdoj.2ade35ee5ebb4fc1a6c48978cbc7fe10
Document Type :
article
Full Text :
https://doi.org/10.1186/s13660-019-2124-5